Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Chem Biol Interact ; 394: 110941, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493910

RESUMO

The current study imposes a new class of organophosphorus (OP)-inhibited cholinesterase reactivators by conceptualizing a family of asymmetric bisoximes with various reactivating scaffolds. Several novel nucleophilic warheads were investigated, putting forward 29 novel reactivating options, by evaluating their nucleophilicity and ability to directly decompose OP compounds. Adopting the so-called zwitterionic strategy, 17 mono-oxime and nine bisoxime reactivators were discovered with major emphasis on the bifunctional-moiety approach. Compounds were compared with clinically used standards and other known experimentally highlighted reactivators. Our results clearly favor the concept of asymmetric bisoximes as leading reactivators in terms of efficacy and versatility. These top-ranked compounds were characterized in detail by reactivation kinetics parameters and evaluated for potential CNS availability. The highlighted molecules 55, 57, and 58 with various reactivating warheads, surpassed the reactivating potency of pralidoxime and several notable uncharged reactivators. The versatility of lead drug candidate 55 was also inspected on OP-inhibited butyrylcholinesterase, revealing a much higher rate compared to existing clinical antidotes.

2.
Arch Toxicol ; 98(4): 1135-1149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38446233

RESUMO

A-series agent A-234 belongs to a new generation of nerve agents. The poisoning of a former Russian spy Sergei Skripal and his daughter in Salisbury, England, in March 2018 led to the inclusion of A-234 and other A-series agents into the Chemical Weapons Convention. Even though five years have already passed, there is still very little information on its chemical properties, biological activities, and treatment options with established antidotes. In this article, we first assessed A-234 stability in neutral pH for subsequent experiments. Then, we determined its inhibitory potential towards human recombinant acetylcholinesterase (HssAChE; EC 3.1.1.7) and butyrylcholinesterase (HssBChE; EC 3.1.1.8), the ability of HI-6, obidoxime, pralidoxime, methoxime, and trimedoxime to reactivate inhibited cholinesterases (ChEs), its toxicity in rats and therapeutic effects of different antidotal approaches. Finally, we utilized molecular dynamics to explain our findings. The results of spontaneous A-234 hydrolysis showed a slow process with a reaction rate displaying a triphasic course during the first 72 h (the residual concentration 86.2%). A-234 was found to be a potent inhibitor of both human ChEs (HssAChE IC50 = 0.101 ± 0.003 µM and HssBChE IC50 = 0.036 ± 0.002 µM), whereas the five marketed oximes have negligible reactivation ability toward A-234-inhibited HssAChE and HssBChE. The acute toxicity of A-234 is comparable to that of VX and in the context of therapy, atropine and diazepam effectively mitigate A-234 lethality. Even though oxime administration may induce minor improvements, selected oximes (HI-6 and methoxime) do not reactivate ChEs in vivo. Molecular dynamics implies that all marketed oximes are weak nucleophiles, which may explain the failure to reactivate the A-234 phosphorus-serine oxygen bond characterized by low partial charge, in particular, HI-6 and trimedoxime oxime oxygen may not be able to effectively approach the A-234 phosphorus, while pralidoxime displayed low interaction energy. This study is the first to provide essential experimental preclinical data on the A-234 compound.


Assuntos
Reativadores da Colinesterase , Compostos de Pralidoxima , Taurina/análogos & derivados , Ratos , Humanos , Animais , Reativadores da Colinesterase/farmacologia , Trimedoxima/farmacologia , Butirilcolinesterase , Acetilcolinesterase , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Antídotos/farmacologia , Inibidores da Colinesterase/toxicidade , Fósforo , Oxigênio
3.
Chem Biol Interact ; 385: 110735, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802409

RESUMO

We report a green chemistry approach for preparation of oxime-functionalized ILs as AChE reactivators: amide/ester linked IL, l-alanine, and l-phenylalanine derived salts bearing pyridinium aldoxime moiety. The reactivation capacities of the novel oximes were evaluated towards AChE inhibited by typical toxic organophosphates, sarin (GB), VX, and paraoxon (PON). The studied compounds are mostly non-toxic up to the highest concentrations screened (2 mM) towards Gram-negative and Gram-positive bacteria cell lines and both filamentous fungi and yeasts in the in vitro screening experiments as well as towards the eukaryotic cell (CHO-K1 cell line). Introduction of the oxime moiety in initially biodegradable structure decreases its ability to biodegradation. The compound 3d was shown to reveal remarkable activity against the AChE inhibited by VX, exceeding conventional reactivators 2-PAM and obidoxime. The regularities on antidotal activity, cell viability, plasma stability, biodegradability as well as molecular docking study of the newly synthesized oximes will be used for further improvement of their structures.


Assuntos
Reativadores da Colinesterase , Líquidos Iônicos , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Oximas/farmacologia , Oximas/química , Antídotos , Reativadores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Compostos de Piridínio/farmacologia , Compostos de Piridínio/química
4.
Arch Toxicol ; 97(10): 2587-2607, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37612377

RESUMO

"Novichok" refers to a new group of nerve agents called the A-series agents. Their existence came to light in 2018 after incidents in the UK and again in 2020 in Russia. They are unique organophosphorus-based compounds developed during the Cold War in a program called Foliant in the USSR. This review is based on original chemical entities from Mirzayanov's memoirs published in 2008. Due to classified research, a considerable debate arose about their structures, and hence, various structural moieties were speculated. For this reason, the scientific literature is highly incomplete and, in some cases, contradictory. This review critically assesses the information published to date on this class of compounds. The scope of this work is to summarize all the available and relevant information, including the physicochemical properties, chemical synthesis, mechanism of action, toxicity, pharmacokinetics, and medical countermeasures used to date. The environmental stability of A-series agents, the lack of environmentally safe decontamination, their high toxicity, and the scarcity of information on post-contamination treatment pose a challenge for managing possible incidents.


Assuntos
Contaminação de Medicamentos , Agentes Neurotóxicos , Agentes Neurotóxicos/toxicidade , Compostos Organofosforados
5.
ACS Appl Mater Interfaces ; 15(23): 28288-28299, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37276196

RESUMO

The low power consumption of electrochromism makes it widely used in actively shaded windows and mirrors, while flexible versions are attractive for use in wearable devices. Initial demonstration of stretchable electrochromic elements promises good conformability to complex surfaces. Here, fully integrated intrinsically stretchable electrochromic devices are demonstrated as single elements and 3 × 3 displays. Conductive and electrochromic ionic liquid-doped poly(3,4-ethylenedioxythiophene) polystyrene sulfonate is combined with poly(vinyl alcohol)-based electrolyte to form complete cells. A transmission change of 15% is demonstrated, along with a reflectance change of 25% for opaque reflective devices, with <7 s switching time, even under 30% strain. Stability under both electrochemical and mechanical strain cycling is demonstrated. A passive matrix display exhibits addressability and low cross-talk under strain. Comparable optical performance to flexible electrochromics and higher deformability provide attractive qualities for use in wearable, biometric monitoring, and robotic skin devices.

6.
Arch Toxicol ; 97(8): 2209-2217, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37221426

RESUMO

Organophosphorus compounds (OPs) involving life-threatening nerve agents (NA) have been known for several decades. Despite a clear mechanism of their lethality caused by the irreversible inhibition of acetylcholinesterase (AChE) and manifested via overstimulation of peripheral nicotinic and muscarinic acetylcholine (ACh) receptors, the mechanism for central neurotoxicity responsible for acute or delayed symptoms of the poisoning has not been thoroughly uncovered. One of the reasons is the lack of a suitable model. In our study, we have chosen the SH-SY5Y model in both the differentiated and undifferentiated state to study the effects of NAs (GB, VX and A234). The activity of expressed AChE in cell lysate assessed by Ellman's method showed 7.3-times higher activity in differentiated SH-SY5Y cells in contrast to undifferentiated cells, and with no involvement of BuChE as proved by ethopropazine (20 µM). The activity of AChE was found to be, in comparison to untreated cells, 16-, 9.3-, and 1.9-times lower upon A234, VX, and GB (100 µM) administration respectively. The cytotoxic effect of given OPs expressed as the IC50 values for differentiated and undifferentiated SH-SY5Y, respectively, was found 12 mM and 5.7 mM (A234), 4.8 mM and 1.1 mM (VX) and 2.6 mM and 3.8 mM (GB). In summary, although our results confirm higher AChE expression in the differentiated SH-SY5Y cell model, the such higher expression does not lead to a more pronounced NA cytotoxic effect. On the contrary, higher expression of AChE may attenuate NA-induced cytotoxicity by scavenging the NA. Such finding highlights a protective role for cholinesterases by scavenging Novichoks (A-agents). Second, we confirmed the mechanism of cytotoxicity of NAs, including A-agents, can be ascribed rather to the non-specific effects of OPs than to AChE-mediated effects.


Assuntos
Antineoplásicos , Agentes Neurotóxicos , Neuroblastoma , Síndromes Neurotóxicas , Humanos , Acetilcolinesterase/metabolismo , Linhagem Celular Tumoral , Síndromes Neurotóxicas/etiologia
7.
Eur J Med Chem ; 252: 115301, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996715

RESUMO

Butyrylcholinesterase (BChE) is one of the most frequently implicated enzymes in the advanced stage of Alzheimer's disease (AD). As part of our endeavors to develop new drug candidates for AD, we have focused on natural template structures, namely the Amaryllidaceae alkaloids carltonine A and B endowed with high BChE selectivity. Herein, we report the design, synthesis, and in vitro evaluation of 57 novel highly selective human BChE (hBChE) inhibitors. Most synthesized compounds showed hBChE inhibition potency ranging from micromolar to low nanomolar scale. Compounds that revealed BChE inhibition below 100 nM were selected for detailed biological investigation. The CNS-targeted profile of the presented compounds was confirmed theoretically by calculating the BBB score algorithm, these data were corroborated by determining the permeability in vitro using PAMPA-assay for the most active derivatives. The study highlighted compounds 87 (hBChE IC50 = 3.8 ± 0.2 nM) and 88 (hBChE IC50 = 5.7 ± 1.5 nM) as the top-ranked BChE inhibitors. Compounds revealed negligible cytotoxicity for the human neuroblastoma (SH-SY5Y) and hepatocellular carcinoma (HepG2) cell lines compared to BChE inhibitory potential. A crystallographic study was performed to inspect the binding mode of compound 87, revealing essential interactions between 87 and hBChE active site. In addition, multidimensional QSAR analyses were applied to determine the relationship between chemical structures and biological activity in a dataset of designed agents. Compound 87 is a promising lead compound with potential implications for treating the late stages of AD.


Assuntos
Doença de Alzheimer , Alcaloides de Amaryllidaceae , Neuroblastoma , Humanos , Butirilcolinesterase/metabolismo , Alcaloides de Amaryllidaceae/farmacologia , Neuroblastoma/tratamento farmacológico , Inibidores da Colinesterase/química , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
8.
Anal Chem ; 94(37): 12706-12714, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36082424

RESUMO

The opioid overdose crisis in North America worsened during the COVID-19 pandemic, with multiple jurisdictions reporting more deaths per day due to the fentanyl-contaminated drug supply than COVID-19. The rapid quantitative detection of fentanyl in the illicit opioid drug supply or in bodily fluids at biologically relevant concentrations (i.e., <80 nM) remains a significant challenge. Electroanalytical techniques are inexpensive and can be used to rapidly detect fentanyl, but detection limits need to be improved. Herein, we detail the development of an electrochemical-based fentanyl analytical detection strategy that used a glassy carbon electrode modified with electrochemically reduced graphene oxide (ERGO) via electrophoretic deposition. The resulting surface was further electrochemically reduced in the presence of fentanyl to enhance the sensitivity. Multiple ERGO thicknesses were prepared in order to prove the versatility and ability to fine-tune the layer to the desired response. Fentanyl was detected at <10 ppb (<30 nM) with a limit of detection of 2 ppb and a calibration curve that covered 4 orders of concentration (from 1 ppb to 10 ppm). This method was sensitive to fentanyl analogues such as carfentanil. Interference from the presence of 100-fold excess of other opioids (heroin, cocaine) or substances typically found in illicit drug samples (e.g. caffeine and sucrose) was not significant.


Assuntos
COVID-19 , Cocaína , Grafite , Drogas Ilícitas , Analgésicos Opioides , Cafeína , Carbono , Eletrodos , Fentanila , Grafite/química , Heroína , Humanos , Óxidos/química , Pandemias , Sacarose
9.
Chem Biol Interact ; 365: 110078, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35940282

RESUMO

The problem of the efficient treatment of acute organophosphorus (OP) poisoning needs more efforts in the development of a versatile antidote, applicable for treatment of the injuries of both peripheral and central nervous systems. A series of N-H, N-methyl, N-butyl, and N-phenyl derivatives of benzhydroxamic (1a-1d), 3-methoxybenzhydroxamic (2a-2d), 4-methoxybenzhydroxamic (3a-3d) acids, and corresponding salycilhydroxamates (4a-4d) was prepared. Their predicted hydrophobicity (log P) was evaluated as regards to ВВВ score by the open access cheminformatics tools; prediction of the passive transport across the BBB was found by means on the parallel artificial membrane permeability assay (PAMPA). The data on reactivation capacity of human acetylcholinesterase (HssAChE) inhibited by GB, VX, and paraoxon was supported by molecular docking study on binding to the active site of the AChE, viability study against mammalian cells (Chinese hamster ovary CHO-K1), and biodegradability (Closed Bottle test OECD 301D). Among the studied compounds, N-butyl derivatives have better balanced combination of properties; among them, N-butylsalicylhydroxamic acid is most promising. The studied compounds demonstrate modest reactivation capacity; change of N-H by N-Me ensures the reactivation capacity in studied concentrations on all studied OP substrates; among N-butyl derivatives, the N-butylsalicylhydroxamic acid demonstrates most promising results within the series. The found regularities may lead to selection of perspective structures to complement current formulations for medical countermeasures against poisoning by organophosphorus toxicants.


Assuntos
Reativadores da Colinesterase , Intoxicação por Organofosfatos , Acetilcolinesterase/metabolismo , Animais , Antídotos/farmacologia , Células CHO , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacologia , Cricetinae , Cricetulus , Humanos , Simulação de Acoplamento Molecular , Oximas/química , Relação Estrutura-Atividade
10.
Toxicol In Vitro ; 85: 105463, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36041654

RESUMO

Insecticides represent the most crucial element in the integrated management approach to malaria and other vector-borne diseases. The evolution of insect resistance to long-used substances and the toxicity of organophosphates (OPs) and carbamates are the main factors contributing to the development of new, environmentally safe pesticides. In our work, fourteen compounds of 7-methoxytacrine-tacrine heterodimers were tested for their insecticidal effect. Compounds were evaluated in vitro on insect acetylcholinesterase from Anopheles gambiae (AgAChE) and Musca domestica (MdAChE). The evaluation was executed in parallel with testing on human erythrocyte acetylcholinesterase (HssAChE) and human butyrylcholinesterase (HssBChE) using a modified Ellman's method. Compound efficacy was determined as IC50 values for the respective enzymes and selectivity indexes were expressed to compare the interspecies selectivity. Docking studies were performed to predict the binding modes of selected compounds. K1328 and K1329 provided high HssAChE/AgAChE selectivity outperforming standard pesticides (carbofuran and bendiocarb), and thus can be considered as suitable lead structure for novel anticholinesterase insecticides.


Assuntos
Anopheles , Carbofurano , Inseticidas , Animais , Humanos , Inibidores da Colinesterase/toxicidade , Acetilcolinesterase/metabolismo , Butirilcolinesterase , Tacrina , Mosquitos Vetores , Anopheles/metabolismo , Carbamatos , Organofosfatos
11.
Biomaterials ; 287: 121661, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35842981

RESUMO

Agricultural biomass remains as one of the commonly found waste on Earth. Although valorisation of these wastes has been studied in detail, the fermentation-based processes still need improvement due to the high cost of hydrolysing enzymes, and the presence of growth inhibitors which constrains the fermentation to produce high-value products. To address these challenges, we developed an integrated process in this study combining abiotic- and bio-catalysis to produce l-tyrosine from corn husk. The first step involved a one-pot hydrolytic hydrogenation tandem reaction without the use of the expensive enzymes, which yielded a mixture of polyols and sugars. Without any purification, these crude hydrolysates can be almost completely utilized by an engineered Escherichia coli strain, which did not exhibit any growth inhibition. The strain produced 0.44 g/L l-tyrosine from 10 g/L crude corn husk hydrolysates, demonstrating the feasibility of converting agricultural biomass into a valuable aromatic amino acid via an integrated process.

12.
STAR Protoc ; 3(1): 101044, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-34977685

RESUMO

The formation of defined surfaces consisting of photosynthetic reaction centers (RCs) in biohybrid solar cells is challenging. Here, we start with the production of engineered RCs for oriented binding. RCs are deposited onto gold electrodes, and 6-mercapto-1-hexanol (MCH) is used to displace multilayers and non-specifically adsorbed RCs. The resulting electrode surfaces are analyzed for photocurrent generation using an intensity-modulated light and lock-in amplifier. Atomic force microscopy (AFM) is used to characterize the surface and the formation of RC structural assemblies. For complete details on the use and execution of this profile, please refer to Jun et al. (2021).


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter sphaeroides , Eletrodos , Ouro/química , Microscopia de Força Atômica/métodos , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/química
13.
Phytochemistry ; 194: 113017, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34798410

RESUMO

One undescribed indole alkaloid together with twenty-two known compounds have been isolated from aerial parts of Vinca minor L. (Apocynaceae). The chemical structures of the isolated alkaloids were determined by a combination of MS, HRMS, 1D, and 2D NMR techniques, and by comparison with literature data. The NMR data of several alkaloids have been revised, corrected, and missing data have been supplemented. Alkaloids isolated in sufficient quantity were screened for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7) and butyrylcholinesterase (BuChE; E.C. 3.1.1.8) inhibitory activity. Selected compounds were also evaluated for prolyl oligopeptidase (POP; E.C. 3.4.21.26), and glycogen synthase 3ß-kinase (GSK-3ß; E.C. 2.7.11.26) inhibition potential. Significant hBuChE inhibition activity has been shown by (-)-2-ethyl-3[2-(3-ethylpiperidinyl)-ethyl]-1H-indole with an IC50 value of 0.65 ± 0.16 µM. This compound was further studied by enzyme kinetics, along with in silico techniques, to reveal the mode of inhibition. This compound is also predicted to cross the blood-brain barrier (BBB) through passive diffusion.


Assuntos
Doença de Alzheimer , Alcaloides Indólicos/farmacologia , Monoterpenos/farmacologia , Vinca , Acetilcolinesterase , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase , Glicogênio Sintase Quinase 3 beta , Compostos Fitoquímicos/farmacologia , Componentes Aéreos da Planta/química , Vinca/química
14.
Toxics ; 9(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34564373

RESUMO

Benzoxonium chloride belongs to the group of quaternary ammonium salts, which have been widely used for decades as disinfectants because of their high efficacy, low toxicity, and thermal stability. In this study, we have prepared the C10-C18 set of benzoxonium-like salts to evaluate the effect of their chemical and biological decontamination capabilities. In particular, biocidal activity against a panel of bacterial strains including Staphylococcus aureus in biofilm form was screened. In addition, the most promising compounds were successfully tested against Francisella tularensis as a representative of potential biological warfare agents. From a point of view of chemical warfare protection, the efficiency of BOC-like compounds to degrade the organophosphate simulant fenitrothion was examined. Notwithstanding that no single compound with universal effectiveness was identified, a mixture of only two compounds from this group would be able to satisfactorily cover the proposed decontamination spectrum. In addition, the compounds were evaluated for their cytotoxicity as a basic safety parameter for potential use in practice. In summary, the dual effect on chemical and biological agents of benzoxonium-like salts offer attractive potential as active components of decontamination mixtures in the case of a terrorist threat or chemical or biological accidents.

15.
Pediatr Diabetes ; 22(7): 982-991, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34374183

RESUMO

OBJECTIVE: To develop and scale algorithm-enabled patient prioritization to improve population-level management of type 1 diabetes (T1D) in a pediatric clinic with fixed resources, using telemedicine and remote monitoring of patients via continuous glucose monitor (CGM) data review. RESEARCH DESIGN AND METHODS: We adapted consensus glucose targets for T1D patients using CGM to identify interpretable clinical criteria to prioritize patients for weekly provider review. The criteria were constructed to manage the number of patients reviewed weekly and identify patients who most needed provider contact. We developed an interactive dashboard to display CGM data relevant for the patients prioritized for review. RESULTS: The introduction of the new criteria and interactive dashboard was associated with a 60% reduction in the mean time spent by diabetes team members who remotely and asynchronously reviewed patient data and contacted patients, from 3.2 ± 0.20 to 1.3 ± 0.24 min per patient per week. Given fixed resources for review, this corresponded to an estimated 147% increase in weekly clinic capacity. Patients who qualified for and received remote review (n = 58) have associated 8.8 percentage points (pp) (95% CI = 0.6-16.9 pp) greater time-in-range (70-180 mg/dl) glucoses compared to 25 control patients who did not qualify at 12 months after T1D onset. CONCLUSIONS: An algorithm-enabled prioritization of T1D patients with CGM for asynchronous remote review reduced provider time spent per patient and was associated with improved time-in-range.


Assuntos
Algoritmos , Automonitorização da Glicemia/métodos , Diabetes Mellitus Tipo 1/terapia , Saúde da População , Medicina de Precisão/métodos , Adolescente , Glicemia/análise , Criança , Estudos de Coortes , Feminino , Hospitais Pediátricos , Humanos , Masculino , Estudos Retrospectivos , Fatores de Tempo
16.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361074

RESUMO

Alzheimer's disease (AD) is a multifactorial neurodegenerative condition of the central nervous system (CNS) that is currently treated by cholinesterase inhibitors and the N-methyl-d-aspartate receptor antagonist, memantine. Emerging evidence strongly supports the relevance of targeting butyrylcholinesterase (BuChE) in the more advanced stages of AD. Within this study, we have generated a pilot series of compounds (1-20) structurally inspired from belladine-type Amaryllidaceae alkaloids, namely carltonine A and B, and evaluated their acetylcholinesterase (AChE) and BuChE inhibition properties. Some of the compounds exhibited intriguing inhibition activity for human BuChE (hBuChE), with a preference for BuChE over AChE. Seven compounds were found to possess a hBuChE inhibition profile, with IC50 values below 1 µM. The most potent one, compound 6, showed nanomolar range activity with an IC50 value of 72 nM and an excellent selectivity pattern over AChE, reaching a selectivity index of almost 1400. Compound 6 was further studied by enzyme kinetics, along with in-silico techniques, to reveal the mode of inhibition. The prediction of CNS availability estimates that all the compounds in this survey can pass through the blood-brain barrier (BBB), as disclosed by the BBB score.


Assuntos
Acetilcolinesterase/química , Alcaloides de Amaryllidaceae/química , Butirilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Neuroblastoma/tratamento farmacológico , Tiramina/análogos & derivados , Proliferação de Células , Inibidores da Colinesterase/química , Simulação por Computador , Humanos , Neuroblastoma/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Tiramina/química
17.
iScience ; 24(5): 102500, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34113832

RESUMO

The use of biomacromolecules is a nascent development in clean alternative energies. In applications of biosensors and biophotovoltaic devices, the bacterial photosynthetic reaction center (RC) is a protein-pigment complex that has been commonly interfaced with electrodes, in large part to take advantage of the long-lived and high efficiency of charge separation. We investigated assemblies of RCs on an electrode that range from monolayer to multilayers by measuring the photocurrent produced when illuminated by an intensity-modulated excitation light source. In addition, atomic force microscopy and modeling of the photocurrent with the Marcus-Hush-Chidsey theory detailed the reorganization energy for the electron transfer process, which also revealed changes in the RC local environment due to the adsorbed conformations. The local environment in which the RCs are embedded significantly influenced photocurrent generation, which has implications for electron transfer of other biomacromolecules deposited on a surface in sensor and photovoltaic applications employing a redox electrolyte.

18.
Bioorg Med Chem Lett ; 43: 128100, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33984470

RESUMO

The search for novel and effective therapeutics for Alzheimer's disease (AD) is the main quest that remains to be resolved. The goal is to find a disease-modifying agent able to confront the multifactorial nature of the disease positively. Herewith, a family of huprineY-tryptophan heterodimers was prepared, resulting in inhibition of cholinesterase and neuronal nitric oxide synthase enzymes, with effect against amyloid-beta (Aß) and potential ability to cross the blood-brain barrier. Their cholinesterase pattern of behavior was inspected using kinetic analysis in tandem with docking studies. These heterodimers exhibited a promising pharmacological profile with strong implication in AD.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Aminoquinolinas/farmacologia , Inibidores da Colinesterase/farmacologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Fármacos Neuroprotetores/farmacologia , Triptofano/farmacologia , Doença de Alzheimer/metabolismo , Aminoquinolinas/química , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade , Triptofano/química
19.
ACS Chem Neurosci ; 12(8): 1328-1342, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33797877

RESUMO

Multitarget-directed ligands (MTDLs) are considered a promising therapeutic strategy to address the multifactorial nature of Alzheimer's disease (AD). Novel MTDLs have been designed as inhibitors of human acetylcholinesterases/butyrylcholinesterases, monoamine oxidase A/B, and glycogen synthase kinase 3ß and as calcium channel antagonists via the Biginelli multicomponent reaction. Among these MTDLs, (±)-BIGI-3h was identified as a promising new hit compound showing in vitro balanced activities toward the aforementioned recognized AD targets. Additional in vitro studies demonstrated antioxidant effects and brain penetration, along with the ability to inhibit the aggregation of both τ protein and ß-amyloid peptide. The in vivo studies have shown that (±)-BIGI-3h (10 mg/kg intraperitoneally) significantly reduces scopolamine-induced cognitive deficits.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Humanos , Ligantes , Monoaminoxidase/metabolismo
20.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917200

RESUMO

A series of novel C4-C7-tethered biscoumarin derivatives (12a-e) linked through piperazine moiety was designed, synthesized, and evaluated biological/therapeutic potential. Biscoumarin 12d was found to be the most effective inhibitor of both acetylcholinesterase (AChE, IC50 = 6.30 µM) and butyrylcholinesterase (BChE, IC50 = 49 µM). Detailed molecular modelling studies compared the accommodation of ensaculin (well-established coumarin derivative tested in phase I of clinical trials) and 12d in the human recombinant AChE (hAChE) active site. The ability of novel compounds to cross the blood-brain barrier (BBB) was predicted with a positive outcome for compound 12e. The antiproliferative effects of newly synthesized biscoumarin derivatives were tested in vitro on human lung carcinoma cell line (A549) and normal colon fibroblast cell line (CCD-18Co). The effect of derivatives on cell proliferation was evaluated by MTT assay, quantification of cell numbers and viability, colony-forming assay, analysis of cell cycle distribution and mitotic activity. Intracellular localization of used derivatives in A549 cells was confirmed by confocal microscopy. Derivatives 12d and 12e showed significant antiproliferative activity in A549 cancer cells without a significant effect on normal CCD-18Co cells. The inhibition of hAChE/human recombinant BChE (hBChE), the antiproliferative activity on cancer cells, and the ability to cross the BBB suggest the high potential of biscoumarin derivatives. Beside the treatment of cancer, 12e might be applicable against disorders such as schizophrenia, and 12d could serve future development as therapeutic agents in the prevention and/or treatment of Alzheimer's disease.


Assuntos
Técnicas de Química Sintética , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Modelos Moleculares , Células A549 , Doença de Alzheimer/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Cumarínicos/síntese química , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...